
Some notes on WinAos

Felix Friedrich

Computer Systems Institute, ETH Z�urich, Switzerland

friedrich@inf.ethz.ch

1 What is WinAos?

WinAos is an emulation of the operating system Aos (\Native Aos") on Windows. Native Aos is an operating system

written in and for the programming language Active Oberon that supports the programming of multithreaded applications

by ways of so called Active Objects. Aos has a zoomable user interface and contains a lot of sample applications, in

particular it provides editors, some multimedia components and an Integrated Development Environment. Aos is the

successor of the Oberon system, a single-threaded operating system with a very powerful and interesting GUI. Oberon is

still supported as one (thread) of many windows in the Aos GUI.

WinAos is the successor of (and initially based on) the ETH Plugin Oberon for Windows by E. Zeller. A lot of

functionality of this Oberon emulation system was kept and is still contained in the system. Besides the pure emulation of

the Aos GUI, it is therefore also possible to use it for seamless integration of the Oberon system in Windows, where for

instance Oberon frames can be displayed and used like Windows windows. This dual nature of WinAos is also re
ected in

the two di�erent implementations that come with a WinAos system and which can be selected by the user, cf. Section 5.

2 Purpose

The purpose of WinAos is to provide the functionality of the Aos operating system on Windows-based computers. This

is achieved by a replacement of all very-low-level functionality of Aos by calls to the WinAPI library. The WinAos kernel is

very much interface compatible to the kernel of the native Aos system and, together with some in- and output modules,

provides the necessary translations to the Windows API.

3 Compatibility

Since the base modules in WinAos are supposed to be interface-compatible with the ones of Aos, in general Modules that

can be compiled within Aos can also be compiled within WinAos. Applications that run on Aos do normally also run on

WinAos.

Of course there is low-level functionality of Aos that cannot be used under Windows in the same way. Examples are

the direct access to devices (such as the USB subsystem) as these are shielded by windows from the user. In these cases

workarounds normally are available such as the access of USB connected hard-disks via the �le system of the Windows

system.

4 Work- and Search-Path

WinAos uses the �le system provided by the windows system and therefore - unlike Native Aos1 - immediately features

the use of directories. In WinAos an ordered set of search paths and a working path can be speci�ed in a con�guration

�le (cf. Section 7). Whenever a �le is looked for without speci�cation of a relative or absolute path, it is �rst searched in

the working directory and if not found there the search paths are traversed in the order in which they have been speci�ed.

Whenever a �le is written without speci�ed location it is written to the (current) working path.

To understand this is particularly interesting and important for understanding the usage of object-�les. As an example

consider a work path being speci�ed as C:/MyWork and search paths being speci�ed as

C:/Aos/WinAos/ObjE; C:/Aos/WinAos/Aos:

1 Naturally di�erent �le systems can be mounted from Aos but the native Aos �le system does not support directories



2

Assume you use, modify and compile a module �le, say PCP.Mod (a part of the compiler, by the way), the �rst time. Then

at its �rst usage the object �le PCP.Obw may not be contained in your work path but, say in one of the search paths, and

therefore is loaded from the search path in memory. Now compiling PCP.Mod results in writing a new object �le to the

work path. The next time you restart the system (or unload the module) this �le will be available on and taken from the

work path.

In e�ect this means that if you update your WinAos system by exchanging everything but the Work path you may still

be using `old' object �les resident in the work path. Therefore it is wise to remove old object �les from your local work

path whenever you update WinAos.

5 Internal and External View

WinAos comes in two di�erent con�gurations, one of them being the `internal' the other being the `external' version.

The major di�erence is that the Oberon subsystem UI of Aos is started as an Aos window in the �rst case while it is

started as an (external to Aos) Windows window in the latter case. The advantage of the �rst case is that it is absolutely

compatible with native Aos and therefore is suited best for the typical Aos system programmer while the external version

can be customized to be much closer to a windows look and feel and subsystems (such as the ants software platform)

even appear as ordinary application windows within Windows OS.

As the external version needs a separate handling for the Oberon (Windows-)windows it is not binary compatible with

the internal one. This is the reason why only the one or the other can be run and not both versions can be compiled to

the same system. To be still able to choose between the two, the di�erent versions are compiled in separate directories

(note that naturally they share the same kernel) and just incorporating the one or the other directory in your search paths

makes up the decision between the internal or the external version. The search path can be modi�ed in the con�guration

�le Aos.Text, cf. Section 7.

6 Con�guration of the Oberon subsystem

The con�guration of the Oberon subsystem is contained in a �le whose �le name is speci�ed in the Aos con�guration �le.

For the internal version this normally is Oberon.Text while it usually is OberonExternal.Text for the external version.

7 Con�guration of WinAos

WinAos is con�gured via the �le Aos.Text which has to be located in the same directory as the executable Aos.exe.

This �le is read at startup and is mandatory for a functioning WinAos system. It contains an optional line pointing to an

alternate con�guration �le, a speci�cation of the search path, the work path, the default object �le extension, the Oberon

con�guration �le name and a (sequence of) commands that is (are) executed at startup. A tilde in a separate line ends

the con�guration.

A con�guration line is of the form

identifier = "value"

Here identi�er currently can be one of AlternateConfig, Paths.search, Paths.Work, Defaults.extension, oberon

and cmd. If two con�guration lines have the same identi�er then the �rst line is taken for con�guration!

A typical con�guration �le looks as follows

; external, starting with Oberon

AlternateConfig = "myAos.config"

Paths.Search="Work;ObjE;Src;Src/vyants;Aos;../source;Doc.vy.ants"

Paths.Work="Work"

Defaults.Extension=".Obw"

oberon="OberonExternal.Text"

cmd="SEQ Oberon.DoStart;AosFSTools.Mount WORK WinRelFS ./"

~

(rest ignored)



3

In this example �rst the �le myAos.config is read in, then the search path is set (if not already done in myAos.con�g!),

the work path is set (if not ...) etc. Note that this con�guration is a typical set up for the external version. The

Defaults.Extension entry is particularly interesting, if you want to build a new version with di�erent object �le su�x

(for example to be able to fall back to previous versions if modi�cations are complex).

If, together with the above example, the �le myAos.config just contains the following line

Paths.Work="/tim/Work"

then everything from the �le Aos.Text is kept for con�guration but the work path is set to the user's work path /tim/Work.

8 Building a new WinAos system

Building a WinAos system consists of compiling all necessary source �les and linking the kernel. The steps necessary are

contained in the �les Win32.Aos.Tool (external version) and Win32.Aos2.Tool (internal version). The Release.Build

command contained in the respective Oberon-text �les opens a script �le to compile the release. Note that the com-

piler option ns.Obw determines the used su�x (.Obw) and P/Aos/WinAos/ObjE/ determines the out- and input path

(/Aos/WinAos/ObjE/) for the compiler. To link the kernel to an executable �le, execute the command

PELinker.Link n.Obw nP/Aos/WinAos/ObjE/ Win32.Aos.Link

being also contained in the �le Win32.Aos.Tool. The executable will be generated to your work path. The �le Win32.Aos.Link

contains the �les to be linked and other directives to the linker. It is out of the scope of this document to describe the

PELinker in more detail.


